262 research outputs found

    Natural linewidth analysis of d-band photoemission from Ag(110)

    Full text link
    We report a high-resolution angle-resolved study of photoemission linewidths observed for Ag(110). A careful data analysis yields kresolvedupperlimitsfortheinverseinelasticlifetimesof-resolved upper limits for the inverse inelastic lifetimes of dholesattheXpointofthebulkbandstructure.Attheupper-holes at the X-point of the bulk band structure. At the upper dbandedgetheholelifetimeis-band edge the hole-lifetime is \tau_h \geq 22 fs,i.e.morethanoneorderofmagnitudelargerthanpredictedforafreeelectrongas.Followingcalculationsforfs, i.e. more than one order of magnitude larger than predicted for a free-electron gas. Following calculations for d$-hole dynamics in Cu (I.\ Campillo et al., Phys. Rev. Lett., in press) we interpret the lifetime enhancement by a small scattering cross-section of dd- and spsp-states below the Fermi level. With increasing distance to EFE_F the dd-hole lifetimes get shorter because of the rapidly increasing density of d-states and contributions of intra-dd-band scattering processes, but remain clearly above free-electron-model predictions.Comment: 14 pages, 7 figure

    Selenium and other trace elements in the etiology of Parkinson’s disease: a systematic review and meta-analysis of case-control studies

    Get PDF
    .INTRODUCTION Parkinson’s disease (PD) is a neurodegenerative illness recognised as the most common neurological disorder after Alzheimer’s dementia. Whereas the exact PD etiology remains unknown, risk of developing PD seems to be related to an interrelation of genetic and environmental factors, including also altered exposure to trace elements. In this systematic review and meta-analysis, we updated and summarized the results of epidemiologic case-control studies comparing levels of selenium, copper, iron and zinc in PD patients with healthy subjects in either blood (as whole blood, serum or plasma) and cerebrospinal fluid (CSF). MATERIALS AND METHODS We performed a systematic PubMed search and we included in our assessment only studies reporting demographic and disease-related characteristics, as well as trace element levels in different specimens (whole blood, serum/plasma and CSF). We then performed a meta-analysis of mean differences of trace element levels between cases and controls, using a random-effect model computing the weighted mean differences (WMD) and corresponding 95% confidence intervals (CI) to assess the association between serum/plasma, whole blood, CSF and selenium, copper, iron and zinc with Parkinson’s disease. RESULTS We retrieved 55 papers reporting data for selenium (588 cases and 721 controls), copper (2190 and 2522), iron (2843 and 3434), and zinc (1798 and 1913). Cases showed higher levels of selenium in CSF compared with controls (WMD=5.49; 95%CI 2.82 to 8.15), while levels in serum were similar (WMD=-0.22; -8.05 to 7.62). For copper cases showed higher levels in CSF and lower in serum compared to controls (WMD=1.87; -3.59 to 7.33, and -42.79, -134.35 to 48.76 respectively). Same results were found for iron in CSF (WMD=6.54; -1.97 to 15.04) and in serum/plasma (WMD=-58.19; -106.49 to -9.89 and whole blood (WMD=-95.69; 157.73 to -33.65). On the converse, cases had lower levels of zinc both in CSF (WMD=-7.34; -14.82 to 0.14) and serum/plasma (WMD=-79.93; -143.80 to -16.06). CONCLUSIONS Results of this systematic review and meta-analysis suggests that overexposure to environmental selenium, copper and iron may be risk factors for PD onset or progression. Alternatively, some variation in levels of these trace elements may occur as a consequence of the disease. Considering the burden of PD in the world population, further investigation of trace element exposure in this disease is therefore warranted, especially to plan possible prevention measures

    Selenium and Other Trace Elements in the Etiology of Parkinson's Disease: A Systematic Review and Meta-Analysis of Case-Control Studies

    Get PDF
    Background: Parkinson's disease (PD) is the most common neurodegenerative disease after Alzheimer's dementia. Whereas the exact etiology of PD remains unknown, risk of developing PD seems to be related to a combination of genetic and environmental factors. This also includes abnormal exposure to trace elements of nutritional and toxicological interest. Objectives: In this systematic review and meta-Analysis, we summarized the results of case-control studies comparing levels of selenium, copper, iron, and zinc in PD patients and controls in either blood (whole blood, serum/plasma) or cerebrospinal fluid (CSF). Methods: We performed a systematic PubMed search selecting studies reporting trace element levels in different specimens of patients and controls. We performed a meta-Analysis using a random-effect model to compute the weighted mean differences (WMD) and corresponding 95% CI of selenium, copper, iron, and zinc levels in the blood or CSF of patients and their matched controls. Results: We retrieved 56 papers reporting data for selenium (cases/controls: 588/721), copper (2,190/2,522), iron (2,956/3,469), and zinc (1,798/1,913) contents in CSF and blood. Cases showed considerably higher levels of selenium in CSF compared with controls (+51.6%; WMD 5.49; 95% CI 2.82 to 8.15), while levels in serum were similar (-0.2%; WMD-0.22; 95% CI-8.05 to 7.62). For copper, cases showed slightly higher levels in CSF and slightly lower concentrations in serum (+4.5%; WMD 1.87; 95% CI-3.59 to 7.33, and-4.5%; WMD-42.79; 95% CI-134.35 to 48.76, respectively). A slight increase was also found for CSF iron-levels (+9.5%; WMD 9.92; 1.23 to 18.61), while levels were-decreased in serum/plasma (-5.7%; WMD-58.19; 95% CI-106.49 to-9.89) and whole blood (-10.8%; WMD-95.69; 95% CI-157.73 to-33.65). Conversely, for zinc cases exhibited lower levels both in CSF (-10.8%; WMD-7.34; 95% CI-14.82 to 0.14) and serum/plasma (-7.5%; WMD-79.93; 95% CI-143.80 to-16.06). A longer duration of the disease tends to be associated with overall lower trace element levels in either CSF or blood. Conclusions: Due to the study findings and the greater relevance of the CSF compartment compared with the circulating peripheral ones, this meta-Analysis suggests that overexposure in the central nervous system to selenium, and possibly to copper and iron, may be a risk factor of the disease, while zinc might have a protective-effect

    High-Tc bolometers with silicon-nitride spiderwebsuspension for far-infrared detection

    Get PDF
    High-Tc GdBa2Cu3O7-δ (GBCO) superconducting transition edge bolometers with operating temperatures near 90 K have been made with both closed silicon-nitride membranes and patterned silicon-nitride (SiN) spiderweb-like suspension structures. As a substrate silicon-on-nitride (SON) wafers are used which are made by fusion bonding of a silicon wafer to a silicon wafer with a silicon-nitride top layer. The resulting monocrystalline silicon top layer on the silicon-nitride membranes enables the epitaxial growth of GBCO. By patterning the silicon-nitride the thermal conductance G is reduced from about 20 to 3 μW/K. The noise of both types of bolometers is dominated by the intrinsic noise from phonon fluctuations in the thermal conductance G. The optical efficiency in the far infrared is about 75% due to a goldblack absorption layer. The noise equivalent power NEP for FIR detection is 1.8 pW/√Hz, and the detectivity D* is 5.4×1010 cm √Hz/W. Time constants are 0.1 and 0.6 s, for the closed membrane and the spiderweb like bolometers respectively. The effective time constant can be reduced with about a factor 3 by using voltage bias. Further reduction necessarily results in an increase of the NEP due to the 1/f noise of the superconductor

    Low noise far-infrared detection at 90 K using high-T(c) superconducting bolometers with silicon-nitride beam suspension

    Get PDF
    High-T(c) GdBa2Cu3O7-d (GBCO) superconducting transition edge bolometers with operating temperatures near 90 K and receiving area of 1 mm2 have been made with both closed silicon-nitride membranes and patterned silicon-nitride (Si(x)N(y)) spiderweb-like suspension structures. To enable epitaxial growth of the GBCO layer, a thin monocrystalline Si layer is prepared on the silicon-nitride base, using fusion bonding techniques. By pattering the silicon-nitride supporting membrane the thermal conductance G is reduced from 20 to 3.5 μW/K. The noise of both types of bolometers is fully dominated by the intrinsic noise from phonon fluctuations in the thermal conductance G. The optical efficiency in the far infrared is about 75% due to a gold black absorption layer. The optical noise equivalent power (NEP) is 1.8 pW/√Hz, and the detectivity D* is 5.4x1010 cm√Hz/W. Time constants are 0.1 and 0.6 s, for the closed membrane and the spiderweb like bolometers respectively. We have observed an empirical limit for the NEP for this type of bolometers. The effective timeconstant can be reduced with a factor of 3 by using an electronic feedback system or by using voltage bias. A further reduction necessarily results in an increase of the NEP due to the 1/f noise of the superconductor

    Monovision-based vehicle detection, distance and relative speed measurement in urban traffic

    Get PDF
    This study presents a monovision-based system for on-road vehicle detection and computation of distance and relative speed in urban traffic. Many works have dealt with monovision vehicle detection, but only a few of them provide the distance to the vehicle which is essential for the control of an intelligent transportation system. The system proposed integrates a single camera reducing the monetary cost of stereovision and RADAR-based technologies. The algorithm is divided in three major stages. For vehicle detection, the authors use a combination of two features: the shadow underneath the vehicle and horizontal edges. They propose a new method for shadow thresholding based on the grey-scale histogram assessment of a region of interest on the road. In the second and third stages, the vehicle hypothesis verification and the distance are obtained by means of its number plate whose dimensions and shape are standardised in each country. The analysis of consecutive frames is employed to calculate the relative speed of the vehicle detected. Experimental results showed excellent performance in both vehicle and number plate detections and in the distance measurement, in terms of accuracy and robustness in complex traffic scenarios and under different lighting conditions

    Two-domains bulklike Fermi surface of Ag films deposited onto Si(111)-(7x7)

    Full text link
    Thick metallic silver films have been deposited onto Si(111)-(7x7) substrates at room temperature. Their electronic properties have been studied by using angle resolved photoelectron spectroscopy (ARPES). In addition to the electronic band dispersion along the high-symmetry directions, the Fermi surface topology of the grown films has been investigated. Using ARPES, the spectral weight distribution at the Fermi level throughout large portions of the reciprocal space has been determined at particular perpendicular electron-momentum values. Systematically, the contours of the Fermi surface of these films reflected a sixfold symmetry instead of the threefold symmetry of Ag single crystal. This loss of symmetry has been attributed to the fact that these films appear to be composed by two sets of domains rotated 60o^o from each other. Extra, photoemission features at the Fermi level were also detected, which have been attributed to the presence of surface states and \textit{sp}-quantum states. The dimensionality of the Fermi surface of these films has been analyzed studying the dependence of the Fermi surface contours with the incident photon energy. The behavior of these contours measured at particular points along the Ag Γ\GammaL high-symmetry direction puts forward the three-dimensional character of the electronic structure of the films investigated.Comment: 10 pages, 12 figures, submitted to Physical Review
    corecore